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Maximum entropy predictions are made for the Kirman ant model as well
as the Abrams-Strogatz model of language competition, also known as the voter
model. In both cases the maximum entropy methodology provides good predic-
tions of the limiting distribution of states, as was already the case for the
Schelling model of segregation. As an additional contribution, the analysis of
the models reveals the key role played by relative entropy and the model in
controlling the time horizon of the prediction.
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The maximum entropy (MaxEnt) methodology was first intro-
duced as a general method of statistical prediction by (Jaynes
1957a,b), who showed that its use in predicting the dynamic
evolution of an unobserved system could be extended beyond its
initial use in physics. This insight was incorporated into the baye-
sian image reconstruction framework of Cornwell & Evans (1985),
Narayan & Nityananda (1986) and Skilling & Gull (1991). Assu-
ming that the received data d about a signal is noisy or distorted,
the observer is interested in obtaining a reconstruction μ of the
original clean signal. If p(x) is the probability measure for x, the

1. The author is grateful for the suggestions received at an OFCE seminar in June 2011,
relating to applications of the methodology to the two models investigated here. Any errors are
of course the author’s.
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best reconstruction satisfies the maximum a posteriori criteria
max p(μ | d). Bayes' theorem states that this should be proportional
to a prior probability on the reconstruction, p(μ), multiplied by the
likelihood p(d|μ) that the observed data originated from the
reconstructed signal.

The MaxEnt methodology assumes an entropic prior of the
form p(μ) ∝ exp(S(μ ⎪m)), where S(μ ⎪m) is the relative Shannon
(1948) entropy between the reconstruction μ and a model m,
which is the observer's ex ante guess of the reconstruction, based
on the data d. This choice of prior in the image restoration litera-
ture is underpinned by the rigorous bayesian formulation of Shore
and Johnson (1980), who provide an axiomatic proof that the
entropy measure S is the only prior that does not introduce biases
into the reconstruction. As a result, the reconstruction can be iden-
tified as the one that maximises the following expression, where
ℓ(d ⎪μ) is the log-likelihood log(p(d ⎪μ)):2

p(μ ⎪d ) ∝ exp(αS(μ ⎪m) + ℓ(d ⎪μ))  (1)

The MaxEnt methodology was initially introduced in econo-
mics by Foley (1994) and extended by Toda (2010) as a way of
deriving the statistical equilibrium of a market, i.e. the equilibrium
distribution of endowments over agents. In a companion paper to
the present study, Barde (2012) shows that the problem of alloca-
ting goods between rational agents can be modeled as a congestion
game that possesses the finite improvement property. This means
that any initial condition is linked to a Nash equilibrium by a finite
path. Because each step on this path is the result of agents perfor-
ming welfare-increasing trades, the reversed improvement path
(which starts at the Nash equilibrium and ends at the initial condi-
tion) can be interpreted as a noise process, where agents make
systematic mistakes. This is shown to imply that the problem of
predicting the Nash equilibrium from the initial condition is
formally equivalent to the problem of retrieving an image that has
been corrupted by noise.

2. The multiplicative α term allows for the fact that the entropic prior p(μ) is defined only up
to a multiplicative constant. α therefore effectively serves as a lagrangian parameter for the
maximisation.
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The image reconstruction interpretation of MaxEnt, which rests
on the existence of a finite improvement path linking initial and
final states, suggests that the use of relative entropy in the prior
increases the flexibility of the methodology compared to Shannon
(1948) entropy suggested in Foley (1994). This is because prior
knowledge of the initial condition and of the fact that the initial
and final states are linked by a finite path reduces the uncertainty
of the observer with respect to the final state. This should be
reflected in the entropy measure uncertainty by the inclusion of a
correction term for this prior knowledge, embodied in m. A specific
aspect of this, raised in Barde (2012), is that the model term m
should reflect the length of the finite improvement path. If the
improvement path is known to be short, the model should be
strongly peaked around the initial condition. Conversely, if the
path is long, the model should be flatter, reflecting the fact that
the initial condition is no longer informative as to the final
equilibrium.

In Barde (2012) the use of MaxEnt image reconstruction as a
prediction methodology is investigated by applying it to the Schel-
ling (1969, 1971) model of segregation. This empirical application
was chosen specifically because for a given set of parametrisations
the Schelling model is known to possess the finite improvement
property, where every initial condition leads to a Nash equilibrium
in a finite number of steps. The Schelling model thus provides an
ideal setting for illustrating the image reconstruction interpreta-
tion detailed above.

The purpose of this companion paper is to investigate the
MaxEnt methodology further, by attempting to predict the
outcome of two agent-based models with recruitment, the Kirman
(1993) model of ants and the Abrams and Strogatz (2003) model of
language competition, a type of voter model. In both of these
models there exists different populations, and agents within them
can be recruited, i.e. convinced to switch group, by social pressure
from members of other groups. As a result, the growth of one type
of population depends on the size of the other populations. This
setting is more complicated to predict than that of the Schelling
model, as population sizes are not constant and a final absorbing
state may not even exist. Nevertheless, our first central finding is
that MaxEnt can predict the evolution of these models. The second
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important finding, which stems from the image reconstruction
interpretation of MaxEnt presented above, is the confirmation that
the width of the underlying model m does indeed play a role in
controlling the time horizon of the MaxEnt prediction, which
strongly supports the use of relative entropy rather than absolute
Shannon (1948) entropy.

The remainder of the paper is organised as follows. Section 1
first presents the Kirman model of ant recruitment and then inves-
tigates the effectiveness of the MaxEnt methodology. Section 2
does the same on the voter model, and finally section 3 concludes.

1. The one-dimensional problem: Kirman's model of ants

The Kirman (1993) model of ant recruitment was initially deve-
loped to provide a theoretical explanation for a curious empirical
puzzle in an experiment involving ants feeding from two different
food sources. In the wild, ants that encounter a food source recruit
other ants, quickly causing a large amount of ants to feed from that
source. The experimental puzzle came from the ''cascading'' beha-
viour exhibited by the ants, where most ants used a single source of
food for a period of time, and then suddenly switched to the other
in a very short period. The central advantage of starting with this
model is that because of the simple recruitment process that
governs the evolution of the system, the limit distribution of the
system is well known, which facilitates the process of verifying the
improvement in prediction brought by the use of the MaxEnt
methodology.

1.1. Kirman's model of ants

In this model, two sources of food are available to a group of N
ants, which are denoted ''black'' and ''white''. Describing the state
of the system is simple: at any point in time, let k ∈  be the
number of ants feeding from the black source, with the remaining
N – k ants feeding from the white source. In the following discus-
sion, it will be convenient to refer to x = k/N as the share of the ant
population feeding at the black source, with 1 – x = (N – k)/N the
share feeding from the white source. By extension, we will refer
directly to the color of the ant as identifying the food source it
uses.
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As pointed out in Kirman (1993), ants can change color over
time, either spontaneously (by making a mistake, for instance), or
because they are recruited by an ant of the other color. Because of
this, the system will evolve over time. If ε is the probability of an
ant spontaneously changing color and 1 – δ the probability of an
encounter between two differently coloured ants leading to a
successful recruitment, then the dynamic evolution of the system
is governed by the following probabilities:

 (2)

Figure 1. Time evolution of the share of black ants x
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At every point in time, the number of black ants k can therefore
jump, either k → k + 1 with probability pw→b, or conversely k → k –1
with probability pb→w. One can see that for large values of the ant
population N, the share of black ants x = k/N can be approximated
by a continuous interval [0,1], which allows us to rewrite the transi-
tion probabilities (2):

 (3)

As is the case in Kirman (1993), we assume as a simplification
that δ = 2ε, which allows the simulations to depend on a single
parameter. Figure 1 shows the evolution of the state of N = 100 ants
over time for the two main parametrisations of ε used by Kirman
(1993). Of the two, the second case, where ε = 0.005 is the most
interesting, as it displays the cascading transitions mentioned
previously.

The research question initially addressed by Kirman (1993) was
to find the limit distribution μ(k) of the proportion of time the
system spends in a state k. We show below that the MaxEnt metho-
dology can not only replicate this finding, but in fact provide a
more general prediction of the time-density of the system for any
number of steps τ.

1.2. Prior model and likelihood

We start by specifying a model m(x,τ) for the relative entropy
term in (1). As stated in the introduction, one would intuitively
expect this to change depending on the desired time-horizon of the
prediction. For low values of τ (short horizons), one would expect
the model to be peaked around the initial condition x0. Conversely,
for large values of τ (long horizons) the system will be able to
explore large areas of the state space, and the model should be
flatter.3 This movement away from the initial condition x0 after τ
steps is modeled by the diffusion process of 1-dimensional stopped
random walk. Given the transition probabilities (3), at any point in
time the probability that a jump occurs is pj (x) = pw→b (x) + pb→w (x),
while the system remains unchanged with probability 1 – pj(x) .

3. As pointed out in Barde (2012), if the system is ergodic, then in the limit τ → ∞, the model
should be a uniform distribution, as all states become accessible.
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pj (x) = ε + 2(1 – δ) x (1 – x)  (4)

Comparing equations (4) and (3), one can see that in the limit
ε → 0, we have pw→b (x) = pb→w (x) = pj(x)/2. This also holds for all
values of ε if x = 0.5. As a result, the diffusion away from a known
initial state x0 after τ units of time have elapsed can be approxi-
mated by a one-dimensional random walk where pj(x0)τ jumps
occur, each of which takes values {+ 1/N, – 1/N} with equal proba-
bility. The standard result for such a process is that the probability
at time τ of having moved a specified distance is given by a bino-
mial distribution with probability parameter 1/2. Because the
prediction μ(x, τ) relates to the predicted share of time system will
spend in each state, the model is obtained by averaging the bino-
mial density over the expected pj(x0)τ jumps for each value of x4

 (5)

Clearly this is an imperfect representation of the diffusion gene-
rated by the recruitment process (3), as one can immediately see
from Table 3 in appendix A that after min(k0, N – k0) jumps, there
is a non-zero probability that the random walk process has gone
beyond the [0,1] bound for x. This is because the model (5) assumes
that probability of a jump pj (x0) is constant, and the probability of
a positive and negative jump is always equal to 1/2. This is not the
case in the actual process (3), as the transition probabilities adjust
to guarantee the process remains within the bounds. It will be
shown, nevertheless, that this simple random walk diffusion (5)
provides a reliable model for the MaxEnt prediction.

The likelihood term for the MaxEnt program (1) can be
obtained from the net transition probabilities. The intuition is that
the transition probabilities (3) provide a stochastic growth process
for each population, which can be integrated to provide an
expected time path. However, given the fixed overall number of
ants, it must be that these expected time paths of both populations

4. The specification used for calculating the time-average of the binomial density is explained
in appendix A.
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cancel out for the limiting distribution. As mentioned previously,
an attractive aspect of the ants model is that the transition proba-
bilities in fact allow for direct derivation of the limit distribution as
τ → ∞. A particularly elegant derivation is provided in the
appendix of Alfarano and Milakovic’ (2009), which uses a model of
herding that is very similar to Kirman (1993).

As shown by Alfarano and Milakovic’ (2009), deriving the limit
distribution directly requires a second order approximation of the
transition process, using a drift and a diffusion term obtained
through a Taylor expansion of the transition process.5 The likeli-
hood obtained below uses only the drift term, i.e. a first-order
approximation of the process. Given the number of black ants k,
the share of black ants x, the transition probabilities (3) lead to the
following expected state after a jump:

(6)

Assuming that an interval of time [t, t + 1] is short enough that
a only single jump is expected to occur, this expected jump directly
determines the expected change in the share of black agents x:

 (7)

One can see from this expression that assuming a minority of
black ants (x < 1/2) the expected change in the share of black ants
is positive. Conversely, if x > 1/2 and a majority of ants are black,
one would expect to see the share of black ants k fall. Thus, the
expectation is that the transition probabilities will bring the state
towards x = 1/2 over time.6 Dividing on both sides by x gives the
expected growth rate of the black ant population during over the
time interval:

 (8)

5. This is outlined in appendix B.

6. Expression (7) helps to clarify the simplifying assumption that δ = 2ε. Because in (3) the
probability of a black ant recruiting a white ant is equal to the probability of a white ant
recruiting a black ant, the expected effects cancel out and δ does not enter the expected change

in population (6).
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As we are assuming a large ants population N, the share of black
ants x ∈ [0, 1] can be treated as a continuous variable. As a result,
the left hand side of this expression can be expressed as the time-
derivative of a logarithm, ∂ln x/∂t, leading to an ordinary differen-
tial equation. For τ units of time, the expected time path of the
black ant population is approximated following expression, where
μ(x, τ) is the share of time spent in state x and ln x is the expected
time path in that state:

(9)

Given the inherent symmetry of the system, it is possible to
obtain a similar expression involving μ(x, τ )ln(1 – x) for the
expected time path of the white ant population.7 Furthermore,
because the overall number of ants is fixed at N and growth of one
population implies an equivalent reduction in the other, the sum
of the two time paths should cancel out. This is used for formulate
the following likelihood for a candidate prediction μ:8

 (10)

Given the model (5) and likelihood (10), the MaxEnt program
for the share of time τ spent in state x in the ants recruitment
model is given by:

 (11)

The first order condition of (11) provides the predicted value of
μ(x, τ). As explained in Barde (2012), one can see that this is effecti-
vely a mixture density between the model (5) and the limit
distribution, which in this case is a symmetric beta distribution:

 (12)

The alpha parameter in (12) is effectively the Lagrange para-
meter from the maximisation problem (11), and controls the
relative weight of the entropy and likelihood terms. In this case,

7. In fact, there is no a priori reason for the state of the system to be measured using the

number of black ants k. Intuitively, using instead the number of white ants N – k as the state
variable should not change the predictions that an observer can make about system.
8. One can see that this expression exhibits the important properties of a log-likelihood: given
a candidate distribution μ and x ∈ [0, 1] it will be negatively valued, and for the limit beta
distribution obtained below, it reaches a maximum value of zero.
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one can see that as τ → ∞ and the model term m(x, τ ) becomes a
uniform distribution, the value of α also controls the exponent of
the limit beta distribution. As shown in appendix B, the limit distri-
bution is is simply xNε–1(1 – x)Nε–1, which corresponds with the one
identified in Kirman (1993). We therefore set α = –1/( Nε – 1).

Figure 2. Time evolution of the MC frequencies vs. MaxEnt prediction,  
x0 = 0.25, ε = 0.02
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1.3. Maximum entropy prediction of the ants model

The reliability of the mixture density (12) in predicting the
proportion of time τ the system spends in each state x is assessed
by comparing the MaxEnt prediction to a Monte-Carlo simulation
of the system defined by the transition probabilities (3), using the
same values of ε as for figure 1. In both cases, N = 100 and the
initial condition was set to x0 = 0.25, in order to explicitly examine
how the system moves from an asymmetric initial condition to its
symmetric limit distribution.9

In both figures 2 and 3, the Monte-Carlo frequencies are repre-
sented by the sequence of triangular markers, while the solid line
represents the MaxEnt prediction (12). As an illustration of how
the mixture density is reached, the dashed lines represent the
components of this prediction, with the thin dash representing the
model (5) and the thicker dash showing the limit beta distribution.
Goodness-of-fit statistics are displayed in Table 1 for both parame-
trisations, and report the Spearman rank correlation ρ and mean
square error of the prediction (12) relative to the variance of the
Monte-Carlo frequency of the for each of the time steps in the
figures.

The first case, shown in figure 2, uses the setting that produced
the path shown in figure 1a. As expected, in the early stages of the
process, for low values of τ, the prediction is dominated by the
model term (5), and over time it gradually converges to the limit
beta distribution. For intermediate values of τ (particularly
τ = 5 x 103 and  τ = 104), one can see that the empirical frequencies
are converging towards the limit distribution faster than suggested
by the prediction. Nevertheless, the mean square error of the
prediction relative to the variance of the Monte-Carlo frequencies
remains low even for these intermediate values of τ. Furthermore,
an important aspect is that the prediction successfully captures the
asymmetry in the empirical frequencies about x0 whenever the
initial condition is not located at 1/2.

9. The number of Monte-Carlo iterations R carried out for a given time-horizon τ  is R = 108/

τ. The implication is that the resulting time-averages in figures 2 and 3 are all calculated over

108 time steps, the only difference between sub-figures being that the system is essentially reset
to the initial condition x0 every τ steps. This this is done to ensure that the goodness-of-fit
statistics, which are based on the variance of the Monte-Carlo frequencies, are comparable
across time horizons τ.
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Figure 3. Time evolution of the MC frequencies vs. MaxEnt prediction, 
x0  = 0.25, ε = 0.005
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The second case, in figure 3, corresponds to the cascading path
in figure 1b. As for the previous setting of ε, the goodness-of-fit is
shown in the second set of rows in Table 1. The qualitative beha-
viour is similar, with the model component of the prediction
dominating in the early stages and a convergence to the limit
distribution for large values of τ. Again, the predicted and Monte-
Carlo frequencies deviate slightly for intermediate values of τ
(τ = 103 in this case), but the relative mean square error is low and
as for the previous case the methodology correctly predicts the
asymmetry involved in shifting from an early distribution that is
practically symmetric about x0 to a limit distribution that is
symmetric about 1/2.

Two important observations stem from these results. The first is
that the MaxEnt methodology produces a good prediction of the
proportion of elapsed time τ the system will spend in each state x,
for all values of τ, and not just in the limit τ → ∞. This provides an
improvement with respect to Kirman (1993), as it allows a descrip-
tion of all the phases of the adjustment from an initial condition to
the limit distribution. The MaxEnt prediction is even able to
capture the asymmetry in the distribution caused by the adjust-
ment from an arbitrary distribution to the symmetric limit. While
this adjustment to the limit distribution can also be obtained using
a traditional Monte-Carlo approach, the MaxEnt result can be
obtained at a greatly reduced computational cost.

The second observation, which results from this ability to
predict over a wider range of time horizons, is that when observed
over short horizons the ant recruitment process (3) behaves very
much like a simple random walk (5). Indeed the early stages of the

Table 1. Goodness of fit, MaxEnt prediction vs. MC frequencies

τ = 102 τ = 103 τ = 5x103 τ = 104 τ = 105 τ = 106

ε = 0.02

Spearman ρ 0.9418 0.9985  0.9975 0.9969 0.9537 0.9917

 p-value 5.74x10 -49 0 0 0 0 0

 MSE/var 0.0011 0.0154  0.0669 0.1183 0.0553 0.0092

ε = 0.005

Spearman ρ 0.9333 0.9716  0.9923 0.9989 0.8816 0.9523

 p-value 3.96x10 -46 0 0 0 0 0

 MSE/var 0.0015 0.1378  0.0664 0.0098  0.04 0.0224
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adjustment, the model term dominates the mixture distribution
completely. It is only over longer time horizons that it converges
to the limit distribution identified in Kirman (1993). This suggests
that in practical terms it might be very difficult to distinguish
recruitment processes from a random walks over short time hori-
zons by looking only at the time density of states.

2. The two-dimensional problem: Voter models

Voter models, also known as consensus models, are similar in
spirit to the ants model seen in the previous section. Typically,
several populations coexist in the same space and members of each
group attempt to convince members of competing groups to
switch over, much like the recruitment process described above.
One of the main attractions of these models is that it is straight-
forward to integrate localised spatial effects that are similar to
those in the Schelling (1971) model, which provides a further
setting for investigating where the predictive power of the MaxEnt
methodology.

2.1. The Abrams-Strogatz model of language competition

In the Abrams and Strogatz (2003) model of language competi-
tion, two languages, W and B are spoken within a population, and
individuals switch from one language to the other according to its
attractiveness. Assuming, as was the case for the ants recruitment
model, that x is the share of individuals speaking language B and
1 – x is the share speaking W, the transition probabilities (13) are
determined by three elements. The first is the intrinsic prestige of
the languages, controlled by a parameter s ∈ [0, 1] for B and 1 – s
for W. The second element is the effect of social pressure, as
measured by the shares x and 1 – x of individuals speaking the
language, and the third is a volatility parameter a which increases
or reduces the effect of social pressure through exponentiation of
this social pressure term:

 (13)
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As a result of these transition probabilities, the dynamic evolu-
tion of the system is given by:

(14)

The equilibrium predictions are qualitatively similar to the ones
obtained in Kirman (1993) and shown in figures 2 and 3. The
system displays one interior equilibrium 0 < x < 1 and two corner

Figure 4. Simulated time evolution of a voter model, s = 0.5, a = 2

(a) Initial state

(i) 10000 steps(h) 7500 steps(g) 5000 steps

(f) 2000 steps(e) 1000 steps(d) 700 steps

(c) 500 steps(b) 200 steps

 ( ) ( ) ( ) ( ) ( )( )( )11 111=1= −−
→→ −−−−−− aa

wbbw xssxxxxxpxpx
dt
dx



Sylvain Barde162

solutions at x = 0 and x = 1.10 In the low volatility case, where
a > 1, the corner solutions are stable and the interior solution is
unstable, while the opposite is true of the high volatility case a < 1.

There are several key differences, however, compared to the ant
recruitment model in section 1. These are due to the assumption
that individuals cannot accidentally switch languages, as was the
case in the ants model through the ε term in the transition proba-
bilities (3). As a consequence, once a corner equilibrium x = 0 or
x = 1 is reached in the voter model, the system will remain in that
state, which is not the case in the ant model, as is visible in Figure
1b. This clarifies why in the voter model the discussion centers on
the stability or instability of the three defined equilibria, while the
ant model focuses instead on the share of total time spent in each
state. The absence of a ε term allowing accidental individual
switching also explains the difference in the parameter that
controls the amount of social interaction and thus the stability of
equilibrium or shape of the distribution. In both models, the
probability of an interaction between agents of different colour is
given by x(1 – x). In the ants model, this is translated into a
switching probability through the additive ε term, while in the
voter model this is done by exponentiating the interaction proba-
bility with a – 1.

In an important analysis of this model of language competition,
Stauffer et al. (2007) show that simulations carried out with a finite
number of individuals produces different results compared to the
continuous equations shown above.11 Furthermore, they show
that local interaction matters for understanding the dynamics of
the system and the time until a stable equilibrium is reached. Local
interaction is defined as a situation where the social pressure on
any given agent to switch from language B to W comes from the
share of the agent's direct neighbours that already speak W rather
than the share of the overall population that speaks W, as is the
case in (14).

10. The interior equilibrium is located at 1/2 in the case of two equivalent languages, with
prestige s = 1 – s = 1/2. This is the parameter value that was used in the simulation reported
below.
11. In Stauffer et al. (2007) the continuous version is referred to as a ''mean-field
approximation''.
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Stauffer et al. (2007) focus on the case where the languages have
the same prestige (s = 1 – s = 1/2) and the volatility is low (a > 1),
therefore this is the parameter setting that will be used below to
investigate the effectiveness of the MaxEnt predictions. In the
following simulation there are N = 40000 agents arranged in a
200 x 200 lattice. The neighbourhood which determines the local
social pressure to switch language is a 3 x 3 square centered on the
agent of interest. As was the case in the analysis of the Schelling
model in Barde (2012), the space occupied by the agents is
assumed to be toroidal, which means that localised neighbou-

Figure 5. Time evolution of voter model state frequencies, 200 MC iterations

(g) [5000 steps]  

(a) [100 steps] (b) [200 steps] (c) [500 steps]

(d) [700 steps] (e) [1000 steps] (f) [2000 steps]

(i) [10000 steps](h) [7500 steps]
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rhood effects can be calculated directly by applying a N x N
circulant matrix A to the state vector, a N x 1 vector recording the
language spoken by each agent. This implies that x, the share of
agents speaking B and 1 – x, the share speaking W in the transition
probability (13) is a local variable that is determined by the 8
closest neighbours of an agent rather than a global variable,
averaged over the overall population.

Figure 4 presents the simulated state of such a system at several
points in time, starting from a random initial condition where half
the agents speak B and half speak and W. One can see that starting
from a dispersed state in the initial condition, relatively few steps
suffice for distinct clusters to appear.12 As the number of steps is
increased, the smaller clusters tend to disappear and the interfaces
between the large clusters of different colours tend to smooth out,
a process which Stauffer et al. (2007) refer to as an increase in the
surface tension of the system. Another characteristic outlined by
their analysis is the existence of long-lived meta-stable equilibria.
This is visible in the last few panels of figure 4, where the two clus-
ters remain similar over a large number of steps. In the limit,
however, the system always ends up in one of two absorbing states,
x = 0 or x = 1.

2.2. Maximum entropy prediction of the voter model

The MaxEnt methodology used to predict the evolution of the
state of the voter model is broadly similar to the one used for the
analysis of the Schelling (1971) model of segregation carried out in
Barde (2012). First of all, a Monte-Carlo analysis was run in order to
obtain a point of comparison for the MaxEnt prediction.
400 random initial conditions were drawn and for each of these
200 separate simulations were run, replicating the process shown in
in figure 4. As an illustration, figure 5 shows the result of running
200 such simulations on the initial condition provided in figure 4a.
Each sub-figure shows the share of runs in which an agent is in state
B  after the specified number of steps.

The setting of the voter model implies that agents do not have
ex-ante preferences for a language, and only determine their state

12. As is the case in Stauffer et al. (2007) one step in time corresponds to one update
opportunity for all N agents to update their state.
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relative to the language spoken by neighbouring agents. As a
result, assuming that languages B and W have equal status and
initial populations have equal size, the initial state of any given
agent i does not provide any information that can be used to
directly provide a model for the relative entropy term (1). The best
guess an observer might make is that mi

w = mi
B = 0.5, which is the

uninformative uniform distribution. This situation is effectively
the same as in the Schelling (1971) model, in which agents do not
have any intrinsic preference for a particular location, and the
attractiveness of a location to an agent is only determined by the
state of the agents around that location. As was the case in Barde
(2012), this is dealt with by using the following double-space
entropy, which measures the information entropy of a message
revealing the state of two randomly picked agents i and j:

(15)

The use of a double-space entropy (15) allows the model to
encode correlations across agents: if two agents i and j are located
close to each other, the probability that they both speak a given
language L is higher than if they are far from each other.13 The
model mL

i,j, which models the probability that i and j both speak
language L is assumed to be a normal distribution over the distance
between agents, as was the case in the analysis of the Schelling
model in Barde (2012). Because the width of this normal distribu-
tion is determined by its standard deviation σm, this parameter
directly controls the distance over which agent decisions are likely
to be correlated.

The likelihood component of (1) that is used to generate the
prediction is assumed to be Gaussian, following again the metho-
dology used in Barde (2012). This effectively measures the
similarity be the data available in the initial condition and the
MaxEnt prediction for each of the two languages L:

 (16)

13. The reader is referred to the appendix of Barde (2012) for a derivation of double space
entropy.
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Here A is the N x N symmetric adjacency matrix, with entries 0
or 1 in the ith row indicating which J agents are neighbours to i. The
data di

L used in the comparison is given by the initial social pressure
dL = Aμ0

L, where μ0
L ∈ {0, 1} is the vector indicating the language

spoken by each agent in the initial condition, taken from figure 4a.
It is important to point out that given the choice of parameterisa-
tion a = 2, the local interaction term AμL in the likelihood is in fact
a linear approximation of the social pressure term in the transition
probabilities (13).14 It will be shown that this simplification never-
theless produces good predictions of the Monte-Carlo frequencies.

Figure 6. MaxEnt state density prediction of voter model

(g) model width σm = 7  

(a) model width σm = 1 (b) model width σm = 2 (c) [model width σm = 3

(d) model width σm = 4 (e) model width σm = 5 (f) model width σm = 6

(i) model width σm = 9(h) model width σm = 8
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Given the relative entropy (15) and likelihood (16), the MaxEnt
program is given below. Its solution, displayed in figure 6 for
increasing values of σm (and therefore increasing model widths) is
obtained numerically using the image reconstruction algorithm of
Skilling and Gull (1991), modified in Barde (2012) to predict the
outcome of the Schelling model.

 (17)

Figure 6 illustrates the MaxEnt predictions obtained with the
initial condition provided in figure 4a for various values of σm.
These are visually comparable with the Monte-Carlo frequencies in
figure 5, also generated from the same initial condition. In addi-
tion, the Spearman rank correlation and mean-square-error
relative to the variance of the Monte-Carlo frequencies were calcu-
lated for each of the 400 sets of predictions and frequencies. The
resulting means and standard deviations are presented in Table 2.
The bold entries in each column indicate identify the value of σm

(row) that best fits the Monte-Carlo frequencies for the relevant
number of steps. The diagonal pattern made up by these bold
entries indicates that the Monte-Carlo frequencies of the system at
successively higher time steps are, up to a point, better predicted
by successively wider models. As was the case for the MaxEnt
prediction of the ants recruitment model in section 1.3, this
supports the suggestion that the width of the model in the relative
entropy term, determined in this case by σm, controls the time-
horizon of the MaxEnt prediction.

A further observation that can be made from Table 2, however,
is that the predictive power of the MaxEnt methodology falls as the
width of the model is increased. Indeed, the bold entries in each
column show a gradual reduction in the correlation coefficient ρ
and an increase in the size of the mean-square error as the number
of steps is increased, coupled with a widening of the standard
deviations around the means of the two statistics. 

14. This is intended as a simplification: using dL = (Aμ0
L)2 and (AμL)2 in (16) produces a Hessian

matrix for the MaxEnt methodology where all N x N entries are non-zero, requiring an
intractable amount of storage and computation time. Using instead the linear approximation
produces a Hessian matrix that is basically A x A, and therefore can be stored and manipulated
efficiently using sparse matrix algorithms.
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Table 2. Goodness of fit, predicted vs. MC voter model state densities
(standard deviations in parenthesis)

 Steps 

σm 100 200 500 700 1000 2000 5000 7500 10000

1

  ρ 0.859 0.740 0.562 0.498 0.434 0.325 0.215 0.179 0.157 

 (0.006) (0.011) (0.017) (0.019) (0.021) (0.024) (0.026) (0.026) (0.027) 

MSE 0.291 0.518 0.865 0.992 1.120 1.340 1.561 1.635 1.678 

 (0.011) (0.020) (0.033) (0.037) (0.042) (0.049) (0.052) (0.052) (0.054) 

2

  ρ 0.950 0.921 0.810 0.752 0.685 0.548 0.383 0.323 0.287 

 (0.004) (0.007) (0.016) (0.020) (0.025) (0.034) (0.042) (0.045) (0.047) 

 MSE   0.114   0.167  0.376  0.487  0.618  0.888  1.217  1.337  1.411 

 (0.007) (0.012) (0.028) (0.036) (0.046) (0.065) (0.082) (0.088) (0.094) 

3

  ρ 0.887 0.918 0.898 0.869 0.826 0.713 0.538  0.465  0.417 

(0.009) (0.008) (0.014) (0.018) (0.024) (0.036) (0.052) (0.059) (0.064) 

 MSE  0.228  0.170   0.205  0.259  0.340  0.557  0.901  1.047  1.142 

 (0.016) (0.013) (0.023) (0.031) (0.041) (0.066) (0.101) (0.115) (0.127) 

4

  ρ 0.813 0.861 0.890 0.884 0.865 0.791 0.638 0.564 0.513 

 (0.015) (0.014) (0.016) (0.019) (0.023) (0.035) (0.056) (0.066) (0.074) 

MSE 0.366 0.274 0.217 0.228 0.263 0.403 0.698 0.845 0.945 

 (0.026) (0.022) (0.026) (0.031) (0.040) (0.064) (0.106) (0.128) (0.145) 

5

  ρ 0.753 0.801 0.850 0.857 0.855 0.815 0.694 0.626 0.577 

 (0.019) (0.018) (0.020) (0.022) (0.026) (0.037) (0.058) (0.070) (0.080) 

MSE 0.480 0.387 0.290 0.276 0.280 0.355 0.586 0.719 0.815 

 (0.033) (0.030) (0.033) (0.038) (0.045) (0.066) (0.109) (0.134) (0.153) 

6

  ρ  0.708  0.747  0.801  0.814  0.821  0.806  0.717  0.659  0.615 

 (0.022) (0.022) (0.025) (0.027) (0.031) (0.041) (0.061) (0.073) (0.083) 

 MSE  0.566  0.489  0.383  0.356  0.341  0.370  0.539  0.653  0.740 

(0.038) (0.036) (0.042) (0.047) (0.055) (0.075) (0.114) (0.139) (0.159) 

7

  ρ  0.675  0.701  0.750  0.766  0.779  0.779   0.718   0.669   0.630 

(0.023) (0.023) (0.029) (0.032) (0.037) (0.047) (0.065) (0.076) (0.086) 

 MSE  0.630  0.577  0.479  0.447  0.422  0.420   0.538   0.632   0.708 

 (0.040) (0.039) (0.050) (0.057) (0.066) (0.087) (0.123) (0.145) (0.164) 

8

  ρ  0.652  0.663  0.702  0.718  0.732  0.742  0.700  0.660  0.627 

 (0.022) (0.023) (0.033) (0.037) (0.042) (0.054) (0.071) (0.081) (0.090) 

 MSE  0.675  0.651  0.571  0.540  0.512  0.491  0.571  0.649  0.714 

 (0.040) (0.041) (0.059) (0.068) (0.078) (0.100) (0.134) (0.154) (0.172) 

9

  ρ  0.635  0.632  0.658  0.672  0.686  0.700  0.673  0.641  0.613 

 (0.021) (0.023) (0.036) (0.042) (0.048) (0.060) (0.076) (0.084) (0.092) 

 MSE  0.709  0.712  0.657  0.629  0.601  0.572  0.624  0.687  0.743 

 (0.037) (0.042) (0.066) (0.077) (0.089) (0.113) (0.144) (0.162) (0.177) 
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The visual comparison of figures 5 and 6 also supports this: As
the model with is increased the prediction gradually becomes more
''grainy'', to the point where it becomes difficult to distinguish an
image. The intuitive conclusion that can be drawn from this is that
there is a limit to the time-horizon over which reliable a prediction
can be made.

3. Discussion and Conclusion

The analysis of the Kirman model of ant recruitment and the
locally-interacting Abrams-Strogatz model of language competi-
tion both show that the maximum entropy methodology can be
used to predict the state distributions of agent-based models with
recruitment, where agents can switch groups based on a measure of
social pressure. This provides support for the use of the MaxEnt
image reconstruction methodology as a prediction methodology
in economics. A first aspect is that MaxEnt can reliably predict the
state space of these agent-based models, even in the case where
there is no defined final state, as in the Kirman (1993) model of ant
recruitment, or in the case where the transition of a given agent is
probabilistic rather than a best response, as was the case with the
initial MaxEnt analysis of the Shelling model carried out in Barde
(2012). A second important aspect is the confirmation of the
suggestion made in Barde (2012) that the width of the model term
controls the time-horizon of the prediction, by serving as a proxy
for the length of improvement path between initial and final state.

In methodological terms, the maximum entropy methodology
used here and in Barde (2012) therefore provides a generalisation
of the existing applications of MaxEnt in economics, mentioned in
the introduction. These typically rely on Shannon (1948) entropy
in their analysis, the justification being that this measures the
absolute uncertainty of an observer as to the state of the system. As
was suggested in Barde (2012) and demonstrated here, this impli-
city corresponds to using relative entropy with respect to a
uniform model m. Given the link between model width and time
horizon, this implies that Shannon MaxEnt predicts over a large
time horizon only. The predictions obtained here, using relative
entropy, carry over a much larger range of time. This is potentially
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relevant, as dynamic systems may behave differently over different
time horizons.

This last point has potential implications given the suggestion
made in Kirman (1993) as to the relevance of recruitment models
in economics. Indeed, Kirman suggests that recruitment is perva-
sive in many markets, in particular financial markets, where
individual agents make decisions based not only on objective
information, but also based on imitation of surrounding agents.
This point is reinforced by the use Alfarano and Milakovic’ (2009)
make of a very similar model to analyse herding behaviour in
agent-based finance. Importantly, the results in section 1.3 reveal
that even when recruitment is present, such that herding occurs
over long horizons of time, it may be nevertheless very difficult to
detect this process over short time horizons, as the system will be
difficult to distinguish from a standard random walk.
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Appendix

A.  Time density of states in a stopped random walk
The diffusion model used in section 1.2 is a stopped one-dimen-

sional random walk, with T = τpj(x0) expected jumps of equally
probably size ± 1/N. The probability of having moved distance ± k/N
for the first six steps is shown in Table 3. One can see that these are
simply the relevant binomial coefficient divided by two to the
power of the number of steps. As a result, the general probability of
having moved distance k/N after T steps is given by:

(A-1)

The proportion of the T steps spent at a given distance k/N,
needed for the model (5) is then simply the average over the rele-
vant column in Table 3. The major difference from the standard
''Pascal triangle'' visible in this table is that given the transition
probabilities, even distances can only be reached with an even
number of steps, and conversely, odd distances require an odd
number of steps. As a result, in order to simplify the calculation of
the average over the number of steps, a recurrence rule is deve-
loped that links every other entry in a column. This uses the two
central recurrence rules for binomial coefficients:

 (A-2)

Table 3. Diffusion from initial condition in a random walk model 

  Distance traveled from x0  

Steps  -6/N  -5/N  -4/N  -3/N  -2/N  -1/N  0  1/N  2/N  3/N  4/N  5/N  6/N 

0       1       

1      1/2 0 1/2      

2     1/4 0 2/4 0 1/4     

3    1/8 0 3/8 0 3/8 0 1/8    

4   1/16 0 4/16 0 6/16 0 4/16 0 1/16   

5  1/32 0 5/32 0 10/32 0 10/32 0 5/32 0 1/32  

6 1/64  0 6/64 0 15/64 0 20/64 0 15/64 0 6/64 0 1/64 
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 (A-3)

Combining the two and rearranging the indexes provides the
following recurrence rule:

 (A-4)

This rule can be used to link directly adjacent non-zero entries
in a given column of Table 3. By using the formula recursively, one
can eliminate the binomial coefficient from the right hand side,
and express the binomial coefficient for any T and k as a product of
terms generated in the same column for lower values of k, where
k = N ⎢x – x0 ⎢ represents the absolute number of steps the system
has traveled away from the initial condition x0. This allows us to
specify (A-1) as follows:

(A-5)

The first right hand-side element forms the core of the expres-
sion. The third element simply states that the number of time steps
T is also a strict upper bound on the distance than can be traveled
in that time, while the second element states that the probability
of being on this upper bound is given by a negative power of 2.15

In practical terms one starts by computing for each value of k a
vector containing the argument in brackets for all values of
i ∈ {0,1,2,…,⎣(τ pj (x0) – k/2)⎦ – 1}, using the argument of the
product term in (A-5). The cumulative product of this vector
provides all the non-zero probabilities (A-1) in the kth column in
Table 3. The sum of these vector entries, divided by τ pj (x0) + 1,
then provides the required model:

15. These two expressions can be seen directly in Table 3: The top sides of the triangle are
simply formed by increasing powers of 1/2. Above these, the distribution is not defined.
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 (A-6)

B. Fokker-Planck derivation of the limit distribution 
of the ant model

Alfarano and Milakovic’ (2009) show, using a Taylor expansion
of the step operator formed by the Markov transition matrix of
transition probabilities (3) that the following Fokker-Planck equa-
tion describes the evolution of the distribution over states:

 (A-7)

The drift term A(x) of the equation corresponds to the expected
jump size (7):

 (A-8)

The diffusion term B(x) corresponds to the probability of a jump
pj (x) given by (4) and used to model the diffusion process away
from the initial condition (5).

 (A-9)

The Fokker-Planck equation (A-7) is a second order differential
equation with variable coefficients, and as shown by Alfarano and
Milakovic’ (2009), the general solution is of the following form,
where c is a constant of integration that can serve to normalise the
probability distribution:

 (A-10)

Replacing δ = 2ε in (A-9) and assuming, as is done both in
(Kirman, 1993; and Alfarano Milakovic’, 2009) that ε → 0 and
N → ∞ in such a way that that Nε remains constant, the diffusion
term can be simplified to B(x) = 2x(1 – x). Replacing the drift term
A(x) and diffusion term B(x) in the general solution gives:
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 (A-11)

The integral term is equal to ln x(1 – x), which leads to the limit
distribution identified in Kirman (1993):

 (A-12)
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